Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro.

نویسندگان

  • M E Rice
  • S J Cragg
  • S A Greenfield
چکیده

Somatodendritic dopamine (DA) release from neurons of the midbrain represents a nonclassical form of neuronal signaling. We assessed characteristics of DA release during electrical stimulation of the substantia nigra pars compacta (SNc) in guinea pig midbrain slices. With the use of parameters optimized for this region, we compared stimulus-induced increases in extracellular DA concentration ([DA]o) in medial and lateral SNc, ventral tegmental area (VTA), and dorsal striatum in vitro. DA release was monitored directly with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Detection of DA in SNc was confirmed by electrochemical, pharmacological, and anatomic criteria. Voltammograms of the released substance had the same peak potentials as those of DA obtained during in vitro calibration, but different from those of the indoleamine 5-hydroxytryptamine. Similar voltammograms were also obtained in the DA-rich striatum during local electrical stimulation. Contribution from the DA metabolite 3,4-dihydroxyphenylacetic acid to somatodendritic release was negligible, as indicated by the lack of effect of the monoamine oxidase inhibitor pargyline (20 microM) on the signal. Lastly, DA voltammograms could only be elicited in regions that were subsequently determined to be positive for tyrosine hydroxylase immunoreactivity (TH-ir). The frequency dependence of stimulated DA release in SNc was determined over a range of 1-50 Hz, with a constant duration of 10 s. Release was frequency dependent up to 10 Hz, with no further increase at higher frequencies. Stimulation at 10 Hz was used in all subsequent experiments. With this paradigm, DA release in SNc was tetrodotoxin insensitive, but strongly Ca2+ dependent. Stimulated [DA]o in the midbrain was also site specific. At the midcaudal level examined, DA efflux was significantly greater in VTA (1.04 +/- 0.05 microM, mean +/- SE) than in medial SNc (0.52 +/- 0.05 microM), which in turn was higher than in lateral SNc (0.35 +/- 0.03 microM). This pattern followed the apparent density of TH-ir, which was also VTA > medial SNc > lateral SNc. This report has introduced a new paradigm for the study of somatodendritic DA release. Voltammetric recording with electrodes of 2-4 microns tip diameter permitted highly localized, direct detection of endogenous DA. The Ca2+ dependence of stimulated release indicated that the process was physiologically relevant. Moreover, the findings that somatodendritic release was frequency dependent across a range characteristic of DA cell firing rates and that stimulated [DA]o varied markedly among DA cell body regions have important implications for how dendritically released DA may function in the physiology and pathophysiology of substantia nigra and VTA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum.

Dopamine (DA) is released from somatodendritic sites of neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), where it has neuromodulatory effects. The aim of this study was to evaluate the role of D2 autoreceptor inhibition in the regulation of this somatodendritic release in each region. Fast cyclic voltammetry at carbon fiber microelectrodes was used to measur...

متن کامل

Differential Calcium Dependence of Axonal Versus Somatodendritic Dopamine Release, with Characteristics of Both in the Ventral Tegmental Area

Midbrain dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) exhibit somatodendritic release of DA. Previous studies indicate a difference between the Ca(2+) dependence of somatodendritic DA release in the SNc and that of axonal DA release in dorsal striatum. Here, we evaluated the Ca(2+) dependence of DA release in the VTA and nucleus accumbens (N...

متن کامل

Modulation of somatodendritic dopamine release by endogenous H(2)O(2): susceptibility in substantia nigra but resistance in VTA.

We showed previously that dopamine (DA) release in dorsal striatum is inhibited by endogenously generated hydrogen peroxide (H(2)O(2)). Here, we examined whether endogenous H(2)O(2) can also modulate somatodendritic DA release in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), with companion measurements in DA terminal regions. Evoked DA release was monitored in b...

متن کامل

Species differences in somatodendritic dopamine transmission determine D2-autoreceptor-mediated inhibition of ventral tegmental area neuron firing.

The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta activates inhibitory postsynaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and...

متن کامل

Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro.

Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 2  شماره 

صفحات  -

تاریخ انتشار 1997